Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(9): 4628-4636, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38357835

RESUMO

Hydrogel-based solar vapour generators (SVGs) are promising for wastewater treatment and desalination. The performance of SVG systems is governed by solar thermal conversion and water management. Progress has been made in achieving high energy conversion efficiency, but the water evaporation rates are still unsatisfactory under 1 sun irradiation. This study introduced novel two-dimensional (2D) boron nanosheets as additives into hydrogel-based SVGs. The resulting SVGs exhibit an outstanding evaporation rate of 4.03 kg m-2 h-1 under 1 sun irradiation. This significant improvement is attributed to the 2D boron nanosheets, which leads to the formation of a higher content of intermediate water and reduced water evaporation enthalpy to 845.11 kJ kg-1. The SVGs into which boron nanosheets were incorporated also showed high salt resistance and durability, demonstrating their great potential for desalination applications.

2.
ChemSusChem ; : e202301905, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268017

RESUMO

Atmospheric water harvesting (AWH) is considered one of the promising technologies to alleviate the uneven-distribution of water resources and water scarcity in arid regions of the world. Hydrogel-based AWH materials are currently attracting increasing attention due to their low cost, high energy efficiency and simple preparation. However, there is a knowledge gap in the screening of hydrogel-based AWH materials in terms of structure-property relationships, which may increase the cost of trial and error in research and fabrication. In this study, we synthesised a variety of hydrogel-based AWH materials, characterized their physochemcial properties visualized the electrostatic potential of polymer chains, and ultimately established the structure-property-application relationships of polymeric AWH materials. Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) hydrogel is able to achieve an excellent water adsorption capacity of 0.62 g g-1 and a high water desorption efficiency of more than 90 % in relatively low-moderate humidity environments, which is regarded as one of the polymer materials with potential for future AWH applications.

3.
ChemSusChem ; 16(14): e202300137, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37019848

RESUMO

Atmospheric water harvesting (AWH) has been recognized as a next-generation technology to alleviate water shortages in arid areas. However, the current AWH materials suffer from insufficient water adsorption capacity and high-water retention, which hinder the practical application of AWH materials. In this study, we developed a novel dual-layered hydrogel (DLH) composed of a light-to-heat conversion layer (LHL) containing novel polydopamine-manganese nanoparticles (PDA-Mn NPs) and a water adsorption layer (WAL) made of 2-(acryloyloxyethyl) trimethylammonium chloride (AEtMA). The WAL has a strong ability to adsorb water molecules in the air and has a high-water storage capacity, and the PDA-Mn NPs embedded in the LHL have excellent photothermal conversion efficiency, leading to light-induced autonomous water release. As a result, the DLH displays a high-water adsorption capacity of 7.73 g g-1 under optimal conditions and could near-quantitatively release captured water within 4 h sunlight exposure. Coupled with its low cost, we believed that the DLH will be one of the promising AWH materials for practical applications.

4.
ChemSusChem ; 15(23): e202201543, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36163592

RESUMO

Solar steam generator (SSG) systems have attracted increasing attention, owing to its simple manufacturing, material abundance, cost-effectiveness, and environmentally friendly freshwater production. This system relies on photothermic materials and water absorbing substrates for a clean continuous distillation process. To optimize this process, there are factors that are needed to be considered such as selection of solar absorber and water absorbent materials, followed by micro/macro-structural system design for efficient water evaporation, floating, and filtration capability. In this contribution, we highlight the general interfacial SSG concept, review and compare recent progresses of different SSG systems, as well as discuss important factors on performance optimization. Furthermore, unaddressed challenges such as SSG's cost to performance ratio, filtration of untreatable micropollutants/microorganisms, and the need of standardization testing will be discussed to further advance future SSG studies.

5.
ACS Mater Au ; 2(5): 576-595, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36855625

RESUMO

The lack of freshwater has been threatening many people who are living in Africa, the Middle East, and Oceania, while the discovery of freshwater harvesting technology is considered a promising solution. Recent advances in structured surface materials, metal-organic frameworks, hygroscopic inorganic compounds (and derivative materials), and functional hydrogels have demonstrated their potential as platform technologies for atmospheric water (i.e., supersaturated fog and unsaturated water) harvesting due to their cheap price, zero second energy requirement, high water capture capacity, and easy installation and operation compared with traditional water harvesting methods, such as long-distance water transportation, seawater desalination, and electrical dew collection devices in rural areas or individual-scale emergent usage. In this contribution, we highlight recent developments in functional materials for "passive" atmospheric water harvesting application, focusing on the structure-property relationship (SPR) to illustrate the transport mechanism of water capture and release. We also discuss technical challenges in the practical applications of the water harvesting materials, including low adaptability in a harsh environment, low capacity under low humidity, self-desorption, and insufficient solar-thermal conversion. Finally, we provide insightful perspectives on the design and fabrication of atmospheric water harvesting materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...